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An analysis that includes the effects of Basset and gravitational forces is presented 
for the dispersion of particles experiencing Stokes drag in isotropic turbulence. The 
fluid velocity correlation function evaluated on the particle trajectory is obtained by 
using the independence approximation and the assumption of Gaussian velocity 
distributions for both the fluid and the particle, formulated by Pismen & Nir (1978). 
The dynamic equation for particle motion with the Basset force is Fourier 
transformed to the frequency domain where it can be solved exactly. It is found that 
the Basset force has virtually no influence on the structure of the fluid velocity 
fluctuations seen by the particles or on particle diffusivities. It does, however, affect 
the motion of the particle by increasing (reducing) the intensities of particle 
turbulence for particles with larger (smaller) inertia. The crossing of trajectories 
associated with the gravitational force tends to enhance the effect of the'Basset force 
on the particle turbulence. An ordering of the terms in the particle equation of 
motion shows that the solution is valid for high particle/fluid density ratios and to 
O(1) in the Stokes number. 

1. Introduction 
A particle suspended in homogeneous turbulence responds to the random fluid 

velocity. As a result, its motion undergoes random displacements that can be 
characterized statistically by one or more turbulent diffusivity coefficients, by the 
mean-square velocity fluctuations, and by the mean drift velocity. Calculations 
presented in the literature, relating the turbulence characteristics of particle motion 
to the turbulence characteristics of the fluid, have been based on Tchen's (1947) 
equation or, more recently, on Maxey & Riley's (1983) equation. These relations 
include the effects of the Stokes drag, the body force, the Basset history force, and 
the forces due to added mass and local fluid acceleration. Faxen terms that account 
for local curvature of the velocity field are also included in Maxey & Riley's equation 
(1983). 

Reeks (1977), Pismen & Nir (1978), and Nir & Pismen (1979), used a simplified 
version of these equations that includes only the Stokes drag and the body force to 
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calculate the diffusivities, intensities, and the velocity correlation functions of 
particle motion in isotropic turbulence. An essential feature of these analyses is that 
they do not make any ad hoc assumptions about RP,,,,(T), the fluid velocity 
correlation function evaluated on the particle trajectory. Instead, they incorporate 
RE, ,,(7) into a system of equations for calculating the Lagrangian particle velocity 
correlation Rut , ( T ) .  Correlations RP,,u5(7) and Rug, (7) are then solved iteratively. The 
unsteady forces, i.e. the Basset history force and the forces due to added mass and 
fluid acceleration, are neglected in these analyses because of their complexities. The 
available results are therefore limited, as the authors have indicated, to  cases of a 
large density ratio p = pp/pf ,  where pp and pf are the densities of the particle and the 
fluid, in addition to the assumption of small particle Reynolds number, Re = 
IuP- ul2a/v, where up is the velocity of the fluid seen by the particle, u is the particle 
velocity, a is the radius of the particle and v is the kinematic viscosity of the fluid. 

Analyses which include the unsteady forces have been presented by Tchen (1947), 
Chao (1964), Hinze (1975) and, more recently, Gouesbet, Berlemont & Picart (1984). 
These authors either assume RP,,u,(~) = RUtu,(7), where R u i u , ( ~ )  is the Lagrangian 
fluid velocity correlation function evaluated on the fluid particle trajectory, or use 
one of Frenkiel’s family of correlation functions to describe RP,,, (7) ,  thus avoiding 
the issue of the essential nonlinearity identified by Lumley (195j). 

This paper extends the analysis of Pismen & Nir (1978) to include the effect of the 
unsteady forces, especially the Basset history force. An important ingredient is the 
determination of the proper ordering of the terms in the dynamic equation of particle 
motion. Maxey & Riley’s equation is non-dimensionalized, after the deterministic 
settling velocity V, is subtracted from the total particle velocity V ,  by using the 
turbulent root-mean-square velocity, uo, a typical Eulerian wavenumber, k,, and a 
typical Eulerian frequency, wo,  which characterize the spatial and temporal structure 
of the turbulence. Only two independent dimensionless parameters result from the 
non-dimensionalization of the dynamic equation for the fluctuating component of 
the particle velocity u. They are the inertial parameter, /3 = %v/(p+$)a2w, ,  which is 
the ratio of turbulence timescale to  the particle response time, and the Stokes 
number, e = (a2w/2v$ .  The density ratio, p ,  does not appear as an independent 
parameter. In  the resulting equation for u, the Stokes drag is of order one, the Basset, 
force is O(E), and the forces due to the added mass and the local fluid acceleration are 
O ( 2 ) .  The Stokes number, E ,  is usually small when the Stokes drag law is used so that 
the neglect of O ( 2 )  in terms involving the fluid velocity fluctuations is justified. A 
solution is presented for particle dispersion that includes Stokes drag, O( l) ,  the 
gravitational force, O ( l ) ,  and the Basset history force, O(e). The difficulty of solving 
the dynamic equation in the tiine domain is avoided by using Fourier trans- 
formations, as first suggested by Chad (1964) for this kind of problem. The energy 
spectrum of the particle velocity, Suiu5(w),  where w is the dimensionless frequency, is 
expressed in terms of the dpectrum of the fluid velocity seen by the particle, SP,,,,(w), 
after the dynamic equatiod is solved. The fluid velocity correlation seen by the 
particle, RP,,,,(7), is the Fourier transformation of SP,,, ( w ) .  As in Pismen & Nir (1978), 
this correlation is related to  the particle velocity correiation, Rutu5(7), by means of the 
independence approximation (or Corrsin’s 1959 conjecture) and the Gaussian 
property of fluctuating velocity of the particle. The closed system of equations is 
solved iteratively in both the frequency and the time domains by numerical 
integration. An important feature of this paper is that  the influence of the Basset 
force on the macroscopic behaviour of particle motion is evaluated for a large range 
of particle inertia and settling rate. 
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2. Scaling of the governing equation for particle motion 

spherical particle in unbounded homogeneous turbulence : 
Maxey & Riley (1983) gave the following equation of motion for a sufficiently small 

dV 
~ 7 ’ c a 3 p , ~  = ~ ~ ~ u ~ ( p ~ - p ~ ) g - 6 n p a (  V - U ~ - + ~ V ~ ~ ~ )  

d DuP 
dt Dt . 

- - [ v- up - +2V2UP] + $TC..3pPP - 

In this analysis, the Eulerian fluid velocity at x is denoted by u(x,t) and the 
Lagrangian position and the velocity of the particle are denoted by r ( t )  and V(t) 
respectively. The fluid velocity seen by the particle is denoted by up = u(r(t), t). It is 
assumed to have zero mean or, equivalently, the coordinate system is assumed to be 
moving with a mean fluid velocity that is uniform in space. The terms on the right- 
hand side of the equation are the gravitational (minus buoyancy) force, the Stokes 
drag, the Basset history force, the force due to added mass, and the force resulting 
from the stress gradients of the fluid flow in the absence of a particle. The added mass 
term is expressed in terms of the time derivative seen by the particle as it moves 
through its trajectory, dldt. The term defining the influence of fluid stress-gradients 
on the particle is expressed in terms of the change of the fluid velocity along its own 
trajectory, DIDt. Equation (1) is valid only when the particle Reynolds number 
based on the relative velocity between fluid and the particle and particle diameter is 
very small. The Faxen terms, a2V2up, in (1) are normally small compared with any 
of the remaining terms, and so they are neglected. 

It should be noted here that Auton, Hunt & Prud’homme (1988) have recently 
found that the added mass term, (d/dt)(V-up) in (l) ,  should be changed to 
(duldt) - (DuP/Dt) for inviscid flow over a spherical particle. This change could be 
especially important in predicting the motion of bubbles in a liquid a t  high values of 
Reynolds number, based on the slip velocity. In this study, this possible correction 
does not carry any tangible significance because the added mass term will be 
neglected since it is considered a higher-order term than the Basset-force term. 

The settling velocity udder gravity and buoyancy is given by 

where the direction of gravity is given by the unit vector, el, and h = V,/u,. If V, 
is subtracted from (l), the following equation is obtained for fluctuating velocity 
u = v- v,: 

dv 9 v 9 v  d dr  I d  1 DuQ 1- 
dt 2 pa2 

1 +- - [up-v,] +- -. 
2pa2 t o  -““.p-vs3 d7 (nv(t-~)/d)a 2p dt P Dt 

(up - WJ + - - 
(3) 

(4) 

This equation can then be made dimensionless by introducing 

- f =  two, x = xk,, a = u/u,, u = vk,, k = k/k,, W ,  = Uok,. 
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with 

It is convenient to rearrange (5 )  so that all terms involving the particle velocity 
and its derivatives are on the left-hand side, while the fluid velocity related terms are 
in the right-hand side. Hereinafter, the overbar will be dropped, and all quantities 

v 

are understood to be dimensionless. This gives 

1 dv, dv, dr 
P dt d7 ( t - 7 ) ~  

with 

The factor p’ is a dimensionless time constant for the response of the particle 
whose magnitude depends on E as /3-’ = 4(p ++)~‘/9.  If the density ratio p is of order 
one or less, the acceleration term on the left-hand side of (6) is of order e2, the same 
as the last two acceleration terms on the right-hand side of (9), and all three 
acceleration terms must be retained. In this case, the term representing acceleration 
due to fluid stresses Duf/Dt makes the analysis intractable. If, however, we restrict 
attention to heavy particles such that the density ratio is of order E-’ or larger, then 
the particle inertial term is of order E ,  and the two inertia terms on the right-hand 
side of (6) may be neglected in comparison to it. The factor of (p+& that appears in 
p contains a term ($) that arises from the added mass term. It is neglible in the limit 
p = O ( E - ~ ) ,  and E vanishing, but we shall retain it for consistency with notation in 
earlier work, and for cases in which the numerical value of E is not particularly small 
so that p need not be very large to justify neglecting the added mass acceleration and 
the fluid stress acceleration. 

In the following section (6) will be solved to O(E)  by neglecting all terms of O(e2)  
in the fluctuating fluid velocity. The added mass term on the right-hand side of (6) 
could be retained, as it is no more difficult mathematically than the Stokes drag and 
the Basset force terms. However, the last term, DuP/Dt, which cannot be 
approximated by dupldt, is very difficult to deal with analytically. Thus, consistent 
with the objective of O ( E )  in accounting for the influence of the fluid turbulence, all 
O ( E ~ )  terms are neglected. 

3. Solution of the dynamic equation in the frequency domain 
Since solutions are sought for the long-time behaviour, initial conditions for 

particle velocity are specified for t .+ - co while the random particle displacement is 
referenced to its position at t = 0 and is evaluated as 

YAt)  = 1 %(7) d7. 

This suppresses any influence of initial conditions on particle dispersion. 

(7) 
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Following Chao (1964), the Fourier transformation, 
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is applied to (6). After neglecting O(e2) terms, one obtains 

where (1 - i )  is used for w < 0. The Fourier component for particle velocity is 
obtained from the algebraic equation (9) as 

q w )  = H ( w )  G f ( w ) ,  (104  

where the frequency response function of the particle, H(w) ,  is 

( l o b )  
1 + E I W ~ ~  k ialwlf 

H ( o )  = 
1 + elwlt + i( slwlt+ w / ~ )  ' 

where ( ) means ensemble average, the symbol * denotes complex conjugate, and 
SpUtu,(w) is the energy spectrum of the fluid velocity seen by the particle. This energy 
spectrum, SpU,,,(w), is also unknown and depends on the particle trajectory due to the 
essential nonlinearity of the problem. The key step here is to relate SpU,,,(w) to the 
known Eulerian statistics through the particle mean-square displacement. Since the 
correlation and the spectrum are a Fourier transform pair, 

the problem of finding S&,,(w) is therefore equivalent to finding RE ,, (7 ) .  

for a stationary process as 

' l  Following Pismen & Nir (1978), the correlation function, RpU6 ,,(7), is represented 

RpU,,,(7) = <U*(O, 0) u,(h7e, + Y ( 7 ) ,  7 ) ) ,  (14) 

where y(7) = r(7)-A7e1 is the deviation of the particle position from the 
deterministic, vertical settling trajectory. By using a Fourier representation of 
uj(r(7), 7 )  in wavenumber space 

m 

u,(r, 7 )  = JPm zi,(k, 7 )  exp ( - ik - r )  d3k, 
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by using Corrsin’s conjecture (1959), and by assuming that the particle velocity is 
Gaussian, the correlation function, RtiUj(7), can be related to the particle 
deterministic settling trajectory, h7, the particle random displacement, q,, and the 
turbulence spectral density function, Qi,(k, 7 ) .  The result is 

RP,iuj(7) = e-ik1A7@ij(k, 7 )  exp ( -+ki kj &,) d3k, (16) rm 
(sec details in Pismen & Nir 1978), where 

q,(7) = 2 r  0 0  rRVtv,(t”)dt”dt’  = 2 I (7-f)REiV,(t’)dt’ (17)  

is the mean square of the random displacement tensor, and RS,t,,(t’) is the symmetrical 
part of the correlation tensor RViVi(t‘). Equations (12) and (16), together with Fourier 
transformations (13) now form a closed system defining SpUiu,(w), fJViv j (w) ,  REiUj(7), 
RVivj(7), and yij(7) provided Qij(k,7) is given. 

4. Solution for an isotropic, homogeneous turbulence model 
The flow is assumed to be homogeneous and isotropic. The spectral density 

function ai,(k, 7 )  is taken to be the same form as used by Kraichnan (1970), Phythian 
(1975), Lundgren & Pointin (1976), Reeks (1977), Pismen & Nir (1978) and Maxey 
(1987) : 

16 
Gi,(k,7)d3k = -k2exp(-2k2) 

(243 

It is noted that Qii(k,7) is assumed to  be separable in k and 7 and to decay in time 
as a Gaussian. Since k and r in the above expression have been made dimensionless 
by ko and wo, it follows that the Eulerian longitudinal integral lengthscale a,nd the 
Eulerian integral timescale, defined by @,(k,7) in (18), are L,, = (2n);/k0 and 

= (;z):/w,,, respectively. 
Mathematically, the existence and uniqueness of the solution to the problem 

outlined in the previous section may be difficult to prove for a general @,(k,7) 
because of the highly nonlinear nature of the equations (see (16), for example). 
Physically, however, it is expected that solutions for the velocity correlations, energy 
spectra, diffusivities and intensities of the particle motion exist, and that there is 
only one meaningful solution for an assumed, physically realistic @(,(k, 7 ) .  

For turbulent self-diffusion in isotropic flow, the Lagrangian correlation function 
is of the form RUiuj(7) = 0 for i +j and Rumua(7) = Ruaup(7) for a =t= /?, where the 
repeated Greek index does not imply summation. For particle dispersion in isotropic 
turbulence, RP,,uj(7) = 0 for i =t= j is also expected, and this relation can be used as an 
initial guess to obtain a solution to the system of equations (Reeks 1977). The 
assumption of Sttuj(w) = 0 for i + j implies that XviVj(w) = 0 and that RVi3!7) = 0 for 
i + j. The exponent in (16) is then -$(k; Y,, + k i  yZz +ki y33). The integration in (16) 
is thus symmetric with respect to k ,  and Rtiu,(7) = 0 for i +j continues to hold in 
successive iterations. Therefore, 

r m  

RP,,u,(7) = J cos (k, h7) QJk,  7 )  exp [ -+k2, Ynn(7)] d3k, 
-m 
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h 

where Y,(T) = 2 J (7- t’)Rtav,(t’) dt’. 
0 

Defining pa = 1 + ay,(T), 

(19) integrates to 

Equations (12), (13) and (20)-(22), together with the pertinent inverse Fourier 
transformations, form a closed system that can be solved by a successive iteration 
procedure that converges rapidly. The dimensionless diffusivities and intensities of 
particle motion are then obtained from 

(4 )  = K m v a ( O ) .  (24) 

The numerical integrations that are required to evaluate (20) and the Fourier 
transformations are carried out using Gaussian quadrature with a degree of precision 
of 7. It is of interest to note that the present formulation in terms of both the 
frequency and the time domains does not involve differential equations while that  of 
Pismen & Nir (1978) results in an integro-differential equation for Y,(7). In the 
present formulation, p appears only in (12), and the system behaves well as p 
becomes very large. In  Pismen & Nir’s (1978) formulation, the integrand in the 
integro-differential equation behaves like an impulse function as p becomes large, 
and very small timesteps are needed to solve the equation. 

5. Results and discussion 
5.1. Dispersion with zero Basset force (e = 0) 

The effects of inertia and gravity force (or settling velocity) on particle dispersion 
have been examined by Reeks (1977) and Nir & Pismen (1979). Inertial effects can 
be represented by the parameter p. Reeks (1977) used a Froude number Fg = k, ui/g 
to represent the gravitational effect and examined the behaviour of particle 
dispersion in a (P ,F )- lane. Nir & Pismen (1979) represent the effect of gravity by 
the settling rate for a linear drag, h = l/(Fgp). It is felt that the physics of dispersion, 
is better revealed using (p, A) because these terms arise naturally from the system of 
equations governing the dispersion, e.g. (12 and 16); the description of the dispersion 
is a kinematic issue after the dynamic equation is solved. Results will first be 
presented for the case when the Basset force is neglected, because Nir & Pismen 
(1979) did not thoroughly present the solutions in the (/I, A)-plane. Next the case 
e > 0 is compared with the case B = 0 to allow an assessment of the effect of the 
Basset force. 

Figure 1 shows the dependence of dimensionless particle lateral diffusivities, D,,, 
and intensities, (vi), on (p, A ) .  It can be seen that in the (p, A)-plane, the settling 
velocity or mean drift velocity, A: has a strong influence on D,, at any fixed /3. 
However, it  is noted that D,, is only weakly dependent on inertia. Very similar 

g P  
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FIGURE 1 .  Effect of particle inertia and settling rate on particle dispersion for E = 0. Intensities 
and diffusivities are made dimensionless by turbulence scales uo and k,. (a )  Lateral diffusivity; 
(a) Lateral intensity. 

features are also observed for D,,. In fact, D,, and D,, behave asymptotically as 
(27t);lA and (2x);/2A as A becomes large, showing that D,, and D,, are asymptotically 
independent of /3 at large A. When A = 0, diffusivities D,, and D,, change at  most by 
37% from 0.913 (fluid diffusivity) to 1.2533 as p' varies from 0 to co. It is also 
interesting to consider very small particles with very large values of /? (say 50). Such 
particles respond well to turbulence and have almost the same energy as the 
turbulence. Their diffusivities, however, will be less than that of the fluid as long as 
they have significant mean drift (say A F 1). This is so because a particle with 
significant mean drift sees a less energetic turbulence at lower frequency than does 
a particle with no mean drift, which is shown in figure 5 ,  to be discussed later. An 
equivalent interpretation in the time domain is that the particle with significant 
settling tends to drift away from strongly correlated turbulent eddies and thus see 
a less correlated turbulence environment than does a particle with no settling 
velocity. 

The influence of settling velocity on the intensities, (v:), is not so strong as that 
of inertia, as shown in figure 1 (b )  for (vi). The mean drift, A, has little effect on (vz) 
for particles with large /3. For particles with small /3, (v:) is asymptotically 
proportional to /3 as /3 approaches zero. An effect of settling on (vi) is, however, 
clearly seen for /3 - O(1) and A > 1. These results are consistent with those of Reeks 
(1977). 

The results in figure l (a)  are also reflected in the correlation functions of fluid 
velocity seen by the particle, RP,,ua(7), presented in figure 2 (a) for /3 ranging from 0 
to co at A = 0 and in figure 2 ( b )  for A between 0 and 5 at p = 1. As /3 varies from 0 
to co, RP,,J7) changes monotonically from the larger Eulerian fluid velocity 
correlation to the smaller Lagrangian fluid velocity correlation. This trend is 
opposite to what was observed in an experiment by Shlien & Corrsin (1974). The fact 
that the Eulerian correlation is larger than the Lagrangian one in the present 
analysis and the previous analyses of Kraichnan (1970), Phythian (1975), Lundgren 
& Pointin (1976), and Reeks (1977) is a natural consequence of the form of Qi,(k, 7 )  
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FIQURE 2. (a) Effect of particle inertia on the fluid velocity correlation seen by particle RP,, ,,(T) at 
B = 0. The particle settling velocity is h = 0. ( b )  Effect of particle settling velocity on the lateral 
velocity correlation seen by particle R:l,l(~) at E = 0. The particle inertia is B = 1.  

7 

used in the analyses and, probably, the assumption of the Gaussian turbulence. It 
should have nothing to do with the Corrsin's conjecture because the numerical 
simulation of fluid particle dispersion by Kraichnan (1970) in a Gaussian turbulence 
revealed the same trend as using Corrsin's conjecture. The changes in the area under 
the correlation curves in figure 2(a) are not large, implying that the changes in 
diffusivities due to changes in /3 are not large. The significant effect of A on RP,,%,(7) 
is clearly demonstrated in figure 2 ( b ) .  As A increases, negative tails develop in 
RP,,u,(7) at h > 2. A further increase in h leads t o  a more rapid loss of the correlation 
of uX(t) and a large decrease in the timescale. Negative tails are inherent in the 
Eulerian correlation in order to satisfy conservation of mass. The negative values 
shown in figure 2 (b) are interpreted as resulting from particles rapidly moving from 
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FIGURE 3. Fluid velocity spectrum seen by particle f7Emum(w) at p = 1 for E = 0 and E = 0.3. 
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T 

FIGURE 4. Particle velocity correlation R u m u a ( ~ )  at p = 1, A = 0 and for E = 0 and 0.3. 

a region of positive (negative) velocity into a region of negative (positive) velocity 
when A is large. 

5.2. Effect of the Basset force 
The effect of the Basset force on diffusivities can now be examined by comparing 
with results for e = 0. It is found that the largest relative difference of lateral 
diffusivity, (D,,(e = 0.3)-D2,(e = 0)) /Dz2(c  = 0 ) ,  for E = 0.3 is 0.7% at  (8, A )  = (0.2, 
0) for the whole range of (p, A )  investigated. Even at  a larger Stokes number, B = 1, 
the maximum effect is only 2.7 % at (p, A )  = (0.5,O). It is clear that  the Basset force 
has little influence on particle diffusivities for all values of (p, A ) .  Furthermore, it is 
found that the Basset force changes RP,,Jr) by less than 0.003 between e = 0 and 
e = 0.3 for all values of 7 .  From figure 3 it is seen that the inclusion of the Basset force 
at e = 0.3 results in an indistinguishable difference between SP,,Je = 0.3) and 
SP,,u.,(~ = 0). This implies that  the Basset force has virtually no influence on the 
statistics of the detailed structure of the fluid velocity seen by the particle. 

Figures 4 and 5 show particle velocity correlation functions, RVav,(r), and energy 
spectra, Sv,v,(w), a t  /3 = 1 for different values of h and e. Since RP,,JT) and SpUZu,(w) 
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FIGURE 5. Particle velocity spectrum SVmv,(w) at p = 1 ,  A = 0 and 3. 
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FIGURE 6. Effect of Basset force on the energy transfer function of particle at various 8, 

are virtually independent of 6, the differences in Rvmv,(7) and Svzvm(w) for E = 0 and 
E = 0.3 must be due to differences in H ( w ) ,  the frequency response function defined in 
(lob). Figure 6 shows the particle energy transfer function, IH(w) 1 2 ,  as a function of 
w for ,8 ranging from 0.2 to 10. It can be seen that the response at  high frequency is 
significantly changed by the Basset force. Thus, one can conclude that the Basset 
force does influence the particle motion, and that this influence comes from a change 
in H ( w )  or IH(o) l2 .  It is apparent from (12) and from figure 6 that only the high- 
frequency component of the energy spectrum of the particle velocity is significantly 
affected by the Basset force. This is also indicated in figure 4 and figure 5.  It can be 
seen that increasing A increases the change in SVaVa(w) because, as mean drift velocity 
increases, the particle sees a more rapidly evolving flow field. It, thus, experiences 
more energetic turbulence at  higher frequency than it would at small or zero A. 

The quantity influenced most by the Basset force is the intensity of particle 
motion, (vi), that is important in problems involving particle deposition and 
involving erosion by particle impact on walls. Figure 7 shows the relative change in 
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t 

J 

FIQURE 7 .  Relative difference of particle lateral intensity A ,  = ( (v i (e ) )  - ( V : ( E  = O ) ) ) / ( D ; ( E  = 0)) 
as a function of B and A at E = 0.3. 

the lateral intensity of the particle fluctuation, A ,  = ((w:(E = 0.3)) - ( D ~ ( E  = O ) ) ) /  
($ (e  = 0 ) ) ,  as a,function of /3 and h at  B = 0.3. The effect of h is obvious. As h 
increases, A ,  increases because of the increase in SEmu,(w) at high frequency. The 
effect of crossing-trajectory therefore is to amplify the Basset force. The effect of 
inertia, /3, on A ,  is more complex. The relative difference, A, ,  approaches zero as 
/3 + 0 or asp  + oc, . For small values of /3, A ,  > 0, since the Basset force tends to increase 
the turbulence intensity of large particles. For larger values of /3, e.g. /3 > 2 for A = 
0, one has A ,  < 0. This indicates that the Basset force actually reduces the intensities 
of motion for a small particle. This can be seen more clearly from figure 8(a)  where 
A ,  is shown as a function of E for various values of /3 and A. The result that A ,  < 0 
for larger values of /3 reflects the competition between two factors appearing in the 
Basset term in (6), the excitation related to uP(t) and response related to v ( t ) .  The 
factor controlling the competition is mainly the inertia of the particle. For E = 0, if 
/3 % 1, the particle energy transfer function is nearly flat. Thus, the particle is able 
to respond to nearly all frequencies of the turbulent fluctuations sensed along its 
trajectory. When the Basset term is included the particle becomes much more 
sluggish than at E = 0 for /? 9 1, so it picks up less energy. Thus, even with additional 
excitation from the Basset term, the particle effectively receives less energy from 
turbulence. On the other hand, for small p, the particle is already very sluggish in 
responding to turbulence excitation. Additional inertia due to the Basset term does 
not change the sluggishness of the particle very much. However, the additional 
increase in excitation associated with the Basset term is effectively seen and picked 
up by the particle. 

From figure 8(a)  and figure 8 ( b ) ,  one can see that the relative change in 
longitudinal intensity, A , ,  is less than the change in laterial intensity, A,, when h > 0. 
This means that the lateral component of the particle fluctuating velocity is more 
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P9 A - 0.5.3 - 1 .o, 3 - 0.5,O 
_I 1.0,1 - 1.0,o 
--+- 2.0,o 
--c-. 4.0,O 
---+-. 16.0 

P, A - 0.5,3 - 1.0,3 - 1.0,l 

0 0.1 0.2 0.3 
6 

FIQURE 8. Relative difference of particle intensities A ,  = ((vi(e)) - (v:(e = O ) ) ) / ( $ ( e  = 0)) as 
functions of E at various values of /3 and A ,  (a) A , ;  ( b )  A, .  

susceptible to the Basset force than the longitudinal one. Since iH(w)  I z  is the same for 
both components, the difference appears in SpUuUu(w). As shown in figure 3, SpUzuz(w) is 
larger than SpUlUl(w) at high frequency for h > 0. The particle, therefore, experiences 
more greatly the change in lateral intensity of the fluid fluctuation due to the effect 
of crossing-trajectory when the Basset force is included. 

As a consequence of the change in the turbulent intensities of particle motion due 
to the Basset force, the integral timescale of the particle motion, q, is also affected. 
Since the diffusivities are virtually unchanged when the Basset force is included, any 
increase in the intensities corresponds to a decrease in the integral timescale that can 
be computed from = Dm/(vi) .  

It is noted that Hinze (1975, p. 468) gave a criterion for neglecting the influence 
of the Basset force on the motion of particles. For heavy particles (such as solid 
particles in a gas), the neglect of the Basset-force term affects the amplitude of the 
oscillating motion of a particle when (1/2a) ( v /w) i  < 0.6, which is equivalent to E’ = 

(wa2/2v)i  2 0.589 for the Stokes number, E’,  based on the oscillating frequency. 
However, the calculation that lead to  the above criterion was based purely on the 
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behaviour of IH(w)I2, the particle response function. The effect of changes in the 
power spectrum, SEaua(w), on the particle motion was not included because the 
behaviour of Stmu,(w) was not known, even approximately, in the presence of the 
Basset force. The effect of settling rate was not dealt with either. As pointed out by 
Hinze, this criterion is strictly applicable only to very fine particles for which the 
particle intensity and diffusivity are close to  those of the fluid. The present analysis 
gives an account of the effect of the Basset force on the turbulence intensities and 
diffusivities of particle motion with arbitrary inertia and settling rate. 

It should be mentioned here that, in practice, 8 = 0.3 is large since the use of ( 1 )  is 
restricted to low Reynolds number. For example, consider a spherical water droplet 
of 280 pm in diameter in the central region of a vertical 2 in. pipe with an air flow a t  
Re % 30000. For this flow, uo x 35.6 cm/s, the fluid diffusivity is D, % 9.15 cm2/s, 
and the typical frequency wo is about 0.913u;/Df x 126/s.  This gives a Stokes number 
of 6 = 0.286. However, the particle Reynolds number based on terminal velocity is 
about 20, that is far too large for the Stokes law of drag to be accurate. For 8 % 0.3, 
it is probably more important to  consider the effect of a nonlinear drag law because 
unsteady forces are small. 

Before concluding the discussion of the effect of the Basset force, it is necessary to 
address an issue that has been raised by Reeks & Mckee (1984). They reported that 
the initial velocity difference that exists between the particle and the fluid at the time 
when the particle is introduced contributes to the long-time particle diffusivity 
because the initial disturbance in velocity dies off slowly as t-t due to the Basset force 
while the displacement grows as ti. The product of velocity and displacement results 
in a finite contribution to  the long-time diffusivity. The unphysical quality of this 
result potentially challenges the validity of the Basset term. Sano (1981) studied the 
impulsively started motion of a sphere at low Reynolds number for both small and 
large times using the complete Navier-Stokes equation. The initial disturbance was 
found to decay as t-2 a t  large time rather than t-t. Recently, Mei, Lawrence & Adrian 
(1990) considered the unsteady flow over a sphere at  finite Reynolds number with 
small oscillation in the free-stream velocity. A solution of the full Navier-Stokes 
equation was obtained using a finite-difference method. Agreement with the classical 
result was obtained a t  high frequencies in that the Basset force was found to  vary as 
wt.  However, it was found that the ‘Basset force’ is proportional to the frequency of 
the oscillation to  the first power. This behaviour was found both for very small 
Reynolds number, Re = 2aU/v = 0.1, and for a finite Reynolds number, Re = 40, as 
long as the convection term is kept in the computation. This means that the Basset- 
force term in the time domain has a kernel that decays much faster than t-: a t  large 
time because of the influence of convection terms on a slowly varying flow. In  the 
frequency domain, this long-time behaviour corresponds to a small region near w = 
0 whose size depends on particle Reynolds number. The original expression for the 
Basset force is used in the present analysis, knowing that initial conditions do not 
contribute to the long-time diffusivities of the particle motion. The present analysis 
avoids this unphysical behaviour by enforcing the stationarity of the random 
processes u ( t )  and y ( t )  in deriving (16). This suppresses any possible influence of the 
initial conditions. Consequently, diffusivities obtained here are solely due to  the 
random motions of the particle. 
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6. Summary and conclusion 
(i) An analysis is presented for particle dispersion in isotropic turbulence that 

includes the effect of the Bassct history force, the effect of inertia, and the effect of 
the crossing of trajectories caused by mean settling velocity. Results are obtained for 
particle motions in the Stokes regime. Corrsin's conjecture is assumed. 

(ii) The analyses of Reeks (1977) and of Pismen & Nir (1978) are shown to be easily 
extended to the case of density ratio of O(e-') or higher when the Stokes number is 
small. The analysis is then accurate up to O(1) when the Basset force is neglected. 

(iii) Analysis of dispersion in the absence of the Basset force reveals that 
diffusivities of particle motion depend strongly on the settling velocity and only 
weakly on the inertia. The intensities, however, depend strongly on inertia and only 
weakly upon the settling velocity. 

(iv) The Basset force has virtually no influence either on the long-time particle 
diffusivities or on the detailed structure of the time history of the fluid velocity seen 
by the particle on its trajectory, in a statistical sense. 

(v) The crossing of trajectories tends to enhance the effect of the Basset force by 
increasing the intensities of turbulent velocities of particle. Particle inertia enhances 
the effect of the Basset force on the turbulence intensities of particles with large, but 
finite inertia. It reduces the turbulence of small particles with small inertia. 
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